Gene Expression in Late-Life
نویسنده
چکیده
Science proceeds from its mistakes, just as well as its successes. We have argued above that it is “perfectly reasonable for natural selection to produce late-life plateaus in life-history characters.” This is premised on the forces of natural selection having fallen to very low values. The reality of latelife mortality plateaus was a revelation for me, especially having been one of the earliest critics of their existence (see Nusbaum et al., 1993). At that time I argued that aging consisted of an ever growing variety of physiological dysfunctions, which were ever increasing in their severity, leading to the eventual death of all individuals in a population. Yet we now have both the well-corroborated observation of life mortality plateaus, as well as a series of theoretical developments and experiments demonstrating that antagonistic pleiotropy and mutation accumulation can account for these plateaus (Mueller and Rose, 1996; Reynolds et al., 2007; Mueller et al., 2011). This has led to a revolutionary recognition that aging is better described as the “detuning” of adaptation. Thus while a variety of physiological systems may detune during aging, there may be enough age-independent adaptations which allow some individuals to survive this life phase. For those that do, late life is now characterized as the phase in which adaptation re-stabilizes (as explained in Mueller et al., 2011) and thus their physiological performance is capable of allowing an undetermined length of additional life. However this recognition has led us to entirely new and undiscovered country, specifically how does adaptation re-stabilize during late-life? Our previous work has focused on a variety of physiological, cellular, and molecular mechanisms which detune during the aging phase (Rose, 1991; Graves, 1997). Much of this work was described before modern whole genomic approaches and computational methods. At that time, we proposed that there must be suites of genes with age-associated expression related to organismal fitness undergoing age-specific decline. Subsequent work supports our original suppositions, even if this work has been carried out in Drosophila stocks of compromised quality with regards to elucidating generalizable patterns of aging (e.g., inbred and mutant strains; Girardot et al., 2006; Zhan et al., 2007) For example, Zhan et al. (2007) utilized microarray experiments to study gene expression in a variety of tissues (muscle, accessory gland, brain, testes, Malpighian tubules, fat body, and gut) in the Drosophila melanogaster w mutant strain. They found that approximately 4–9% of all genes had an age-specific profile and different levels of upand down-regulated genes with age in various tissues (Table 1). This study also elucidated a number of genes that were age-associated and shared between different tissue types. An examination of the numbers of age-associated genes in this study suggests that many genes show age-independent expression profiles. For example, data from FlyAtlas suggests that about half the fly genome is expressed in all tissue types (Chintapalli et al., 2007). If this is so, then with an estimated Drosophila genome size of 14,000, we expect about 7,000 genes to be operational in all tissues. Indeed, Cherbas et al. (2011) examined the transcriptional diversity of 25 D. melanogaster cell lines. They probed 14,807 genes and found that 64% were expressed at a detectable level in at least one cell line. On average 5885 genes were detected (range 5398–6221). If we can rely on the Zhan et al. (2007) and Cherbas et al. (2011) studies to provide ball-park age-associated and tissue-specific gene expression profiles, then we can conclude that a very high fraction of (>75%) Drosophila’s genes show age-independent expression. Clearly there are methodological issues which will need to be addressed to determine more exact figures of age-associated gene expression in particular stocks living in specific environmental conditions. For example, it is also known that gene expression profiles differ between Drosophila males and females (Muller et al., 2011) and that evolutionary histories impact these profiles as well (Hutter et al., 2008). However, with all these sophistication aside, the existence of a genomic basis for a plateau in late-life survivorship is not too surprising. Clearly Gene expression in late-life
منابع مشابه
The effect of hypothyroidism on the trigeminal calcitonin gene-related peptide containing motoneurons: an immunohisto-chemical study in late neonatal life
CGRP, which coexists with acetylcholine in trigeminal motoneurons, could be one of the regulatory anterograde factors responsible for the enhanced expression of AChR subunits in neuromuscular junction. It has been also shown that low level of thyroid hormone plasma concentration has influence on the transitional development of muscle fibers and related motoneurons through a sever reduction in A...
متن کاملThe effect of hypothyroidism on the trigeminal calcitonin gene-related peptide containing motoneurons: an immunohisto-chemical study in late neonatal life
CGRP, which coexists with acetylcholine in trigeminal motoneurons, could be one of the regulatory anterograde factors responsible for the enhanced expression of AChR subunits in neuromuscular junction. It has been also shown that low level of thyroid hormone plasma concentration has influence on the transitional development of muscle fibers and related motoneurons through a sever reduction in A...
متن کاملMLH1 Gene Expression and Pathologic Factors in Iranian Patients with Colorectal Cancer
Background and Objectives: MutL homolog (MLH1) is a key component of heterodimeric complex MutLα, which recognizes and repairs base-base mismatches or insertion/deletion loops that arise from nucleotide misincorporation. In the absence of MLH1 protein, the number of unrepaired mismatches will increase and cause tumors in organs. The present study aimed at quantitative analysis of MLH1 gene expr...
متن کاملEvaluation of Changes in NFKB Gene Expression Following Epstein-Barr Virus and its Participation in the Half-Life of Patients With Acute Epstein-Barr Positive Lymphoblastic Leukemia
Aim: Leukemia targets are one of the most common childhood malignancies. Epstein-Barr virus is a tumorigenic virus of the herpes family of viruses and causes primary infection in young children. The aim of this study was to evaluate the increase in NFKB expression following EBV virus and its contribution to the half-life of EBV-positive acute lymphoblastic leukemia patients. Materials and Meth...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملInvestigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012